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1. Introduction

Cross sections for electron impact ionization of methane
and hydrogen are part of the necessary data base for model-
ing low temperature glow discharges. Interest in the latter
stems from their application in the formation of diamond and
diamondlike carbon thin films. A herculean effort also cov-
ering electron impact fragmentation of molecular ions and
radicals as well as proton impact ionization of methane and
methane derived radicals has been published by Erhardt and
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Langer.! The great need for such data condensed in suitable

analytic form is reflected in the 35 citations of this paper up
to today. Data on elementary processes in hydrogen—helium
plasmas and corresponding analytic fits have been published
by Janev et al.”> We used both the methane and the hydrogen
data in Tnodeling mass spectra of the ion flux of a low tem-
perature CH,/H, discharge. In the course of the work it be-
came clear that rate coefficients for electron temperatures as

“low as 2 eV were needed and this in turn caused a closer

inspection of the experimental data and the Erhardt—Langer
fit formula in particular in the threshold region. The situation
is depicted in Fig. 1 where experimental data from two dif-
“erent sources are shown together with the fit.as provided by
irhardt and Langer. Two disturbing features are revealed by
this figure. First of all the two sets of experimental data are
obviously not compatible with each other and second the
Erhardt—Langer fit formula shows quite an unphysical bimo-
dal cross section.-The source of this peculiar behavior is very
probably the fact that the fit function was a nine term poly-
nomial in In(x), where x is the electron impact energy in
units of the threshold energy E,, x=E/E. High order poly-
nomial fits tend to such oscillations, as already pointed out
by the authors themselves. For our needs the fit suffers more-
over from a poor representation of the data in the threshold
region. Both shortcomings become unimportant when rate
coefficients for relatively large temperatures (say >50eV) as
in the boundary plasma of tokamaks are needed. For low
temperature plasmas, however, they are unacceptable. The
purpose of this paper is to show how to deal with the quite
common situation where a model function shall be derived
from data sets A and B, where A and B cover different
regions and suffer from discording calibration. We shall use
Bayesian inference, carry through the full Bayesian calcula-
tion, and develop approximate formulas which perform sur-
prisingly well. Partial electron impact ionization cross sec-
tions for CHy and H, are chosen to illustrate how the method
works. However, we want to make quite clear at this point
that we are not concerned with the critical evaluation of the
measurement data itself. ‘

J. Phys. Chem. Ref. Data, Vol. 29, No. 5, 2000



1158
20 b CH,+e =>CH, +.. ]
. a) Erhardt and Langer
16 o O Chatham ]
) 50 o Adamczyk
— ! o . ]
@‘-E’ 12 r g o .
TC) o
T 08 | 4
©
04 J
Ho & (o)
0.0 bt i il
1 10 100
E/E, (eV/12.6eV)

Fic. 1. Experimental cross sections for the electron impact ionization of

methane. Note the discrepancy between the two data sets at 3<E/E;=<8.
The line shows the polynomial fit by Erhardt and Langer (see Ref. 1).

2. Bayesian Rules

Bayesian probability theory (BPT) rests on the application
of two rules. The first is the product rule which allows to
expand a probability or a probability density function
P(H,D|I) of the two variables H and D conditional on fur-
ther information I into simpler densities depending only on
either H or D as a variable

P(H,D|I)=P(H|I)-P(D|H,I)=P(D|I)- P(H|D,I).
n

We identify H with hypothesis and D with data. Equating
the two alternative expansions of P(H,D|I) yields Bayes’
theorem-

P(H|I)
P(D|I)

which tells us how to update prior knowledge P(H|I) about
hypothesis H in the light of data D collected from appropri-
ate experiments designed to test H. P(H|D,I) is called the
posterior probability or probability deunsity for H. It is the
product of P(H|I), the prior probability density for H,
which contains all our knowledge about H prior to inspection
of the data D. P(H|I) may be entirely uninformative, it may
reflect symmetry or invariance properties of H, or it may
even encode prior knowledge about the numerical value of H
and its possible range. P(D|H,I) is the sampling distribution
of the data when regarded as a function of D and is normal-
ized as such or is called the likelihood if considered as a
function of H. P(D|H,I) is in other words the theory of the
experiment which allows us to calculate the expected mea-
surement data if we assume the physics (H) were known.
The denominator P(D|I) in Bayes’ theorem is called the
evidence or the prior predictive value or the global likelihood
for the entire class of hypotheses characterized by H. It is

P(H|D,)= -P(D|H,I), @
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not independent of the other probabilities. This follows from
the second, the so-called marginalization rule of BPT

P(DII)=f P(H,D[I)dH=f P(H|I)- P(D|H,I)dH.
3

The denomination global likelihood for P(D|I) is particu-
larly suggestive on inspection of Eq. (3). P(D|I) plays a
crucial role in the comparison of different models given a
data set D and the decision which of the given models is best
represented by the data D. However, in the forthcoming con-
text it serves merely as a constant which accounts for the
correct normalization of the posterior probability for H. In
this paper we shall apply Egs. (1), (2), and (3) consistently
and shall be content with these manipulations. We are well
aware that this section is entirely inappropriate as an intro-
duction to BPT, and refer the interested reader to excellent
papers covering this subject in the literature. >~

3. The Likelihood

Consider the case, wheré two sets & and A of measured
cross sections are available and were taken at energies X and
X. We then wish to relate the two sets of experimental data
(the generalization to more sets is quite straight forward) to a
single fit function. The general problem with this aim is that
the two data sets cover usually different energy ranges and
moreover may suffer from different calibrations. We assume
that the fit function is fully specified by.a linear-parameter.c
establishing the scale of the fit function and a further set of
(possibly) nonlinear parameters X related to the shape of the
fit function. The parametric dependence of the fit function on
¢ and X will become more transparent further down in Sec.
5. Let us further introduce an (unknown) calibration param-
eter ¥ which, when applied to the data set A, rescales it on
the same scale as the set 3. All this information can be
expressed by the probahility density function

P(3,A f,)?,c,y,X,I)=P(5{f,)2,c,y,5,I)

-P(A|8,%,X,c,y, N D). (@

The right-hand side of Eq. (4) follows from the product rule.
The two factors on the right-hand side of Eq. (4) may be
simplified. The conditional probability P(5‘|)?,}Z' ,C, y,)—:,l ) of
course does not depend on the energies X at which the data
A are taken. Moreover, according to the convention of this

paper the data & are considered to be correct on an absolute
scale and consequently do not depend on vy which accounts

for a calibration error in A. The above likelihood simplifies
therefore to P(éIf,c,):,I). By the same line of reasoning
P(&]S,f,)?,c,y,)t,l) turns out to be independent of X, the
set of energies at which the data & were taken and of & itself,
the cross section data obtained in a different experiment.
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This is true for any circumstances for which the rules of
good scientific practice apply. Equation (4) simplifies there-
fore to

P(S,&lf,)z,c,y,):,l)=P(3|f,c,):,l)-P(A')I)‘{’,c,):,y,l).
' ®)
We now model the data by

§i=C ’ QD(X, ’X)—i— A;,
- (©)
YA;=c-@(X;, M)+ B;.
a; and B; are the respective errors. We assume that the ex-
pectation value of a;, {(;)=0 and {@?)=s? and similarly
for B;, ( ,sz) =S]2-. These pairs of conditions do not, of
course, specify corresponding distribution functions. In fact,
an infinite manifold of functions can be found which meet
tie above woment conditions. By application of the principle
of maximum information entropy’ subject to the moment
constraints the problem becomes unique and we obtain as the
least informative distribution function meeting the moment
constraints a Gaussian

p3zexX.n=]1

l

: { 1[8 (e N1 2}
—expy —xlo,—celx;, S5
s,-\/ZTr Pl72

(7
and
P(AI%.c.X,y)=]] —=
,CoN, Y, T
’ __1. T A V127 @2
Xexp 2[7Aj cp(X;,N) 1S3
®

The definitions
@i X s=fie(X; XS =F,

allow us to introduce vector notation. The properly normal-
ized likelihoods then read

- > 1 k1 7 1 7
P(d|%,c,\,I)=(2m) """ exp{ - E(d—cf)T(d—Cf)},
(10)
P(ﬁlf,c,)t, 7,1)5 (2ar) N2
Xexp[ - %(yﬁ—cﬁ)T('yﬁ—cﬁ)].
(11)

N is the number of data D; and » the number of data d;.

4. Parameter Estimation

Our first goal is the estimation of (x*) from Eqs. (10) and
(11), where p stands for any of the parameters ¢, ¥, A and
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the brackets denote the expectation value. Of particular in-
terest are of course k= 1,2 from which we obtain the average
value and the associated variance, respectively. In order to
calculate (%) we need the probability density of the param-
eters given the data (d,%,D.X). P(c,y,Nd.Z2,D.X.I) may
be obtained by application of Bayes theorem Eq. (2)

P(c,y,N|d,%D,X.I)

P(c,y,N|I . R
_ PleyhD [) PA.DIEF e,y 0)
P(d.B|3.%.1)
(12)

in terms of the previously specified likelihood function Eqgs.
(4), (10), and (11) and the prior density for the parameters

P(c,y,N|I). The latter must be specified now. First of all,

.our knowledge about any of these parameters is independent

of the value assigned to any other prior to taking the data of
course. Consequently P(c,*y,)zll) factorizes into

P(c,y.X|II)=P(c|)- P(y|D)- P(X|T) (13)

and no conditioning other than the general background infor-
mation / enters the factors on the right-hand side due to
mutual logical independence. Simple uninformative priors on
c, v, and X are constants within a range specified by respec-
tive minimum and maximurir values and zero outside. ¢ and’
v are further restricted to positive values. Occasionally we
may have prior information on the amount by which the
calibration in the experiment providing data D differs from
that in the experiment_providj_pg‘da’tgré, Let g be the expec-
tation value of v, ('y)=g, then by the principle of maximum
entropy7 P(ylg.l)=exp(—y/g)lg. We shall employ this form
of prior information on y and can always return to the less
informative situation letting g— in the exponential. With
this specification we can proceed and evaluate expectation
values of a particular parameter. For reasons of definiteness
we choose any of the components of *_ Our first goal is then
to obtain the marginal distribution P(X|d,%,D.X.I) from Eq.
(12) by application of the marginalization rule Eq. (3)

The normalization denominator Z summarizes the constant
values of the prior in Eq. (13) and the evidence denominator
in Eq. (12). The integrand in Eq. (14) is then given by Egs.
(4), (10), and (11) and hence

J. Phys. Chem. Ref. Data, Vol. 29, No. 5, 2000
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d,#D.X.I)

=(27r)_("+N)’2/Zj d'yexp[—g] 7Nf de

P(X

1. L. .
—5(d=cp)ld=cf)

Xexp

—%(yﬁ—cﬁ)T(yﬁ—cﬁ)]; (15)

The argument of the exponentials in Eq. (15), £, may be
comprised as

= A 2 B
E__E(C—CO) "E. (16)

Equating equal powers of ¢ in the exponent of Eq. (15) with
Eq. (16) we obtain

A=fTF+FTF, (172)
I . d’f+ yDTF)?
B=d’d+y*D™D (——f——y-——z—w—, (17b)
FIf+ETF g
co=(d"f+ yDTE)I(F'f+ FTF). (17c)

The integral over ¢ can then be done and results in general
for ¢ in=c=cp. i an expression involving two error func-
tions. This complicated result simplifies if we assume that
the numerical value of the integral changes only insignifi-
cantly if, in carrying out the integration, we replace the lower
limit ¢, by —% and the upper limit ¢y by +oo. This
assumption is well justified for sufficiently precise data d,

D. The integral over c is then just (27/A)"? and we obtain

12
P(N|d%,D.X,I)=(2m)" <"+N>’2/z( ) fdyy”

1
-exp{ - —2—B(y)} (18)

with B(y) as given in Eq. (17b). Note that B(7y) is again a
quadratic form in y. We can therefore proceed as before in
integrating over 7y and replace B(y) by

B(y)=0(y— v0)**+R, (19)
with ’
Redtg—— D" T+ FF
(FTF+FTFsin® ®) g2DTD(FTf+ ETF sin® 9)
24d7fDTF
LTI , (20a)
gDTD(fTf+ FTF sin® 9)
cos 3=DTF/(DTD - FTF)12, (20b)
DTD(FfTf+ FTF sin® &
_ ff ), (200)

FIF+FTF
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T} TR+ ETF)g

DTB(FTF+FTF sin®9)

Due to the factor 9" in Eq. (18), marginalization over 7y is

slightly more complicated than ¢ marginalization. We pro-

ceed by expressing " as a polynomial in (y— y,)=u em-
ploying the Taylor expansion

u N(N-

L= yN|1+N +— 1)(70) + ] (21)

The odd terms in # in the expansion Eq. (21) do not contrib-
ute to the integral Eq. (18). For the even terms it is easy to
derive a recurrence relation by partial integration

(20d)

K+1 © 1 )
IK+2=TIKa Iy=1 zZrexp ‘—'Z‘QZ dz,

2ar 12

Back substitution of Eq. (22) into Eqs. (21) and (18) finally
yields

N R 2 12 2 12
P(N|d.%.D,%.1)=(2m)~ [zl 7. ( A’") ( Q" )

-exp[ - -;—R():)} ,

: (23)
N(N-1) 1
%’V[” 3T 0y
N(N=1)(N=2)(N—3) 1-3
i 4 o }

and the series in brackets is an Nth or (N—1)st order poly-
nomial with only even terms in 7y, JO. This completes y
marginalization and the calculation of the marginal posterior
P():}J,f,lj,)z,l) from which we may now calculate mo-
ments of individual components of N. We have left X un-
specified so far. The previous analysis applies therefore to
any problem with the particular ¢ and vy dependence of Egs.
(10), and (11).

5. Cross Section Model Functions

The choice of cross section model functions will now

specify the so far undetermined parameter set X. Any set of
experimental data covers only a finite range of energies.
Since the evaluation of rate coefficients at elevated tempera-
tures requires the knowledge of the associated cross sections
at even higher energies we base our choice on the Born—
Bethe expressions® for inelastic collisions. These read
o(E)~In(x)/x, .

= E 24
x—E—O (24a)

for optically allowed transitions and
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o(E)~1/x (24b)

for optically forbidden transitions in the high impact energy
limit. We generalize these expressions to

_ (x—1)%In(x)

eE)= e, OE)=cre(E) (25
for optically allowed transitions and
(x—1)°
o= e x (25b)

for optically forbidden. transitions. Model functions Egs.
(25a) and (25b) contain two adjustable nonlinear parameters
a and e which in terms of our previous notation constitute
the components of the vector A= (a,e). We recall, that the
preceding analysis has already accounted for the linear pa-
rameter ¢. The beauty of the particular choice Eq. (25) as a
fit function for ionization cross section is that it is asymptoti-
cally correct. Moreover, our model functions for the cross
sections are positive definite at all energies above threshold.
This property cannot in general be guaranteed for a polyno-
mial fit. This completes the outline of how to estimate pa-
rameters from the given set of data (d,%,D.%).

6. Cross Section Estimates

Having obtained parameter estimates with error bars from
the posterior probability density Eq. (23) and in much the

same way-for ¢ from-a marginal posterior probability density

in ¢ P(clg,i,ﬁ,f,l) one might expect that the job is done.
This is not the case. Using the model function with the pos-
terior values of the parameters amounts to estimating (x?)
from (x) as {x?)={(x).. It is well known, however, that the

difference (x2) —(x)? is equal fo the variance of x and the

above equality holds if and only if the function from which
(x) is determined is infinitely sharp. We shall now exploit to
what extent this assumption holds for the data which will be
used in this paper. Quite generally we want to estimate the
value of the ionization cross section o at an arbitrarily given
energy E on the basis of the given data set (3,)’5,5,)}). We
return once more to Bayesian calculus to compute (o) from a
distribution P(o|E,d,%,D,X,I). Employing the marginaliza-
tion and product rules this density may be expressed as

PlolE.d#5.50 = | aayicp(eyNId.5.5 5.0
-P(alc,N,E,I). (26)
The first factor of the integrand is already known from Eqgs.

(12) and (13). The second factor is the probability density for

the cross section o given c, x , E. Since the conditions c, x R
x=E/E, specify the model function for the cross section via
Eq. (25) uniquely this is

P(cle,h E, D)= 8o~ co(E,X)). @7)
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The resulting distribution Eq. (26) is of scaring complexity.
However, this is of minor concern if we content ourselves
with expectation values of of from Eq. (26). k=1 is of
course the cross section mean and k=2 is needed to calcu-
late the confidence range (Ad?)={c?)—{(c)?. Performing
the integration over o first removes the nasty delta function
and yields

(o¥)= f dhdydc{c- o(E,X)YP(c,y,\|d,%,D,X.1)/Z.
' (28)

The \ integration in Eq. (28) can be accomplished by el-
ementary numerical integration if X is of low dimension. For
higher dimensions Markov chain Monte Carlo methods are
preferred, in which case P(c,'y,}: Ij,f,ﬁ,)? ,1)/Z constitutes
the sampling density and the value of Z does not need to be
known! Equation (28) is then the full Bayesian answer to the
problem of designing a cross section function on the basis of
two different discordant data sets.

7. Cross Section Results

In this section we shall present results of the theory out-
lined above for the direct and dissociative electron impact
ionization cross sections of methane and hydrogen. For
methane we have used the same data as Erhardt and Langer
in their earlier evaluation namely the experiments of
Chatham ez al.® and Adamczyk et al.'® We have chosen the
Chatham data (d) to be correctly calibrated. This choice is of
course open to discussion and rests mainly on the fact that
Cahatham’s data are more recent and were taken in view of
the existing Adamczyk data. Both measurements were cali-
brated against the ionization of argon as a secondary stan-
dard. We have chosen g, the prior expectation value of the

calibration factor y of the Adamczyk data, to be equal to g

=1. A minor problem arises with the Chatham data since the
important cross section regions near threshold are presented
in their paper® as continuous lines. For the present purpose,
this representation had to be digitized. The total number of
data from Chatham’s measurement, that is the cross sections
tabulated at selected energies plus the digitized near thresh-
old cross sections, was chosen to be equal to the number of
data in Adamczyk’s measurement. We have thus, as far as
the cross section shape is concerned, attributed equal weight
to the two sets of data. Finally we had to assign errors to the
data. This is particularly debatable since no error margins are
given in either of the source papers.>'® A very conservative
estimate, which we inferred from the scatter of successive
points in the measurements, is 7% of the cross section maxi-
mum at all energies in both data sets. This includes digitizing
errors!

Figure 2 displays the CH,—CH; experimental data to-
gether with the full Bayesian predictive cross section Eq.
(28) as a full line and the associated error as the shaded area
around this line. Note that the error in the Bayesian estimate
is considerably smaller than the 7% (max) attributed to the

J. Phys. Chem. Ref. Data, Vol. 29, No. 5, 2000
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F1G. 2. The full Bayesian result for the cross section fit to the data of Fig. 1
is shown by the solid line. The gray shaded area is the confidence range.
From the analysis a correction factor for the data of Adamczyk er al. (Ref.
10} may be found to give y=1.2. The open triangles show the data multi-
plied by this factor. The peak approximation (dashed line) represents the
result well within the confidence range.

experimental data. Moreover, the confidence range is energy
dependent unlike the error assignment to the data. This de-
sirable behavior is due to the fact that the model functions
Egs. (25a) and (25b) contain only three parameters, which
are estimated on the basis of about ten times as much data.
This results in very robust and precise cross section predic-
tions.

In spite of the beauty or e Tun bayesian solution, we are
well aware that the procedure to obtain the posterior cross
section estimates Eq. (28) is by far too involved to be used
routinely. It is therefore instructive to evaluate the model

* function’ Eqs. (25a) and (25b) with the posterior expectation”

values of the parameters ¢, a, &, and compare it to the full
Bayesian solution. Conceptually there is a big difference be-
tween the two cases, in fact as large as between (x*) and
(x)? tor some distribution f(x). Numericaily, however, the
two cannot be distinguished within linewidth. Thus the con-
tinuous curve in Fig. 2 also represents the model function
Lq. (25a) cvaluated with paramcters fixed at their posterior
expectation values. This is due to the precision of the input
data and good news for the calculation of rate coefficients
(see Sec. 8).

The surprisingly good performance of the model function
with parameters fixed to their posterior expectation values
has tempted us to try for an even cruder approximation. We
assume well-conditioned data such that everywhere, where
we meet an exponential possibly multiplied by a slower
varying function such as a polynomial, the exponential is
replaced by a Dirac & function positioned at the maximum of
the exponential. The only computational effort required in
this approximation is to find the maximum of R in Eq. (20a)
as a function of the nonlinear parameters . Having deter-

mined X max DY some appropriate search algorithm we find 7y,
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DOSE, PECHER, AND PREUSS

1.6 A A —
14 L [\H2+e =>H, +.. ]
I \
12 L ,’ \ o Krishnakumur |
L ’I \\ O Crowe ]
<10 F A Rapp J
g r —— Bayes
e 0.8 I ———- Janev et al.
Io L A/
= 0.6
o i
04
0.2
00— —
1 10 100
E/E, (eV/15.4256eV)

FiG. 3. Cross section for the electron impact ionization of hydrogen. Three
different data sets are the basis for the Bayesian result (solid line). The
dashed line is a polynomial fit by Janev er al. (Ref. 2). Not shown is the
peak approximation, since it is hardly distinguishable from the result of the
full approach.

from Ea. (19) and finally 6, from Eq. (17c). This bypass to
the full Bayesian calculation produces surprisingly good re-
sults in the case of precise data as shown in Fig. 2 by the
dashed line. The penalty to this route is that we do not obtain
an error margin. '

The analysis which we have developed can of course eas-
ily be extended to include more than two data sets in the
determination of the cross section. A representative case
where data from three different experiments were used is the
ionization of H, into H, . Again we have assumed that the
most recent data by Krishnakumar and Srivastava'! are cor-
rectly calibrated and that the earlier data from the work of

Rapp et al.'> and Crowe and McConkey'® need adjustment

with prior factor g=1. The experimental data from the three
sources are shown in Fig. 3 together with the full Bayesian
predictive cross section estimate Eq. (28) as a continuous
line. The peak (delta function) approximation is not shown,
since it is not distinguishable from the full approach. Also
included in Fig. 3 is the polynomial fit of Janev et al? as the
dotted curve. Its poor reproduction of the experimental data
should be taken as a warning against the blind use of their
collection of fits at least in case of low temperature plasmas.

The results of this section are summarized in Table 1
which provides posterior estimates for the paramelers to be
used in model functions Eqs. (25a) and (25b) for all direct
and dissociative electron impact ionization cross sections of
methane and hydrogen. From the fit result of the respective
model it was obvious which model was the appropriate one
(shown in the second column) and a Bayesian model com-
parison between the two choices was not necessary.

8. Rate Coefficients

For an efficient and fast calculation of rate coefficients it is
essential that the cross section formulas Egs. (25a) and (25b)
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TABLE 1. Posterior estimates for the model parameters in Egs. (25a) and
(25b).

Channel Model ¢ a € Eylev
CH,+e” —CH; + ... (252) 97 44 014 12.6
CH,+e”—CHy + ... (25a) 67 35 020 143
CH,+e¢ —CHf + ... (25a) 093 40 1.0 15.1
CH,+e”—CH'+ ... (252) 031 067 17 222
CH,+e™—C*+ ... (25b) 022 87 12 25.0
CH,+e —H™+ ... (25b) 13 22 1.2 18.1
Hyte —Hy+... (252) 3.9 1.8 018 15.43
Hyte —H Y+ ... (25b) 091 34 1.5 18.06

when evaluated with the posterior expectation values of the
parameters coincide within the linewidth with the result of
the full Bayesian calculation Eq. (28). We may for this very
reason obtain rate coefficients (ov) from Egs. (25a) and
(25b) as

(O'U):f:va‘(E)f(E)dE. (29)

For f(E) we choose here a Maxwellian distribution for illus-
tration purposes

2 1\
f(E)=;(kB——T) exp{—ElkgT}EY’ (30)

We introduce x=E/E, as a new integration variable and
define a@a=E,/kpT, B=(2Ey/m)"?. Substitution into Eq.
(29), noting that-o(E)=0 for E<Eg, yields

(ov)= \%amﬁﬁwa(,\:)x-e““"dx. 31)

We shall neither provide tables of Maxwellian averaged rate
coefficients nor analytic fits but rather describe their efficient
calculation. It can easily be accommodated to a distribution
function other than a Maxwellian. Such a need arises if we
treat the ill posed inversion problem of deriving the electron
energy distribution function from measured spectral line
intensities.'* It is useful to transform the range of integration
in Eq. (31) [1,] into [0,1] by introducing z=x"*

372 1
e\ = 2 ,a ’8 f dz 2l Yo T ax M
A — J A O\A)C \w<)
Nvm P 0 2

The exponent p is still arbitrary and can be chosen in a cer-
tain sense of optimization. We fix p by the requirement that
the integrand in Eq. (32) shall peak at z=1/2. The hope is
that it is then most ‘‘uniformly’’ distributed in 0=<<z=<<1. The
resulting value of p is of course temperature (a) dependent
and depends in principle also on the particular cross section
which is to be averaged. The latter dependence is weak and
we have neglected it. This is in fact no approximation, since
the choice ot p influences only the efficiency of executing
the numerical integration Eq. (32). We have used the

X" 6(x) exp(-ox)/z

FIG. 4. The integrand of Eq. (32) for a=0.02 (solid line) and a= 50 (dashed
line). The latter corresponds to the case of low temperature plasmas. It
covers the whole range and therefore facilitates numerical integration.

CH,—CH, cross section as a representative to estimate the
optimum transformation exponent p. Its temperature depen-
dence is very approximately given by

In(1/p)=0.51930—0.630 72 In( &) — 0.076 07(In( a))?

(33)
in the range 0.02=< &=<<50. Figure 4 displays the transformed
integrand in the range O0=<<z<1 for the limits of the validity
of Eq. (33) and it is obvious that numerical integration em-
ploying the trapezoidal Tule recursively will be fast. The au-
thors are ready to supply the subroutine for calculating rate
coefficients on request. The same routine also provides tem-
perature derivatives of the rate coefficients from

d (o0) 2 ap J-l dz (ax—312) "
—=(ov)=—= — ————x“0(x)e

dar Vo e Joz T
(34)
In concluding this section it is worth pointing out that the
calculation of the rate coefficient should be very accurate
since the presented cross section formulas are asymptotically

exact and we therefore do not encounter a truncation prob-
lem.

9. Summary

Analytic fit formulas for the determination of cross sec-
tions for electron impact ionization of methane and hydrogen
were presented. To the knowledge of the authors this work
reveals for the first time fit functions for the partial cross
sections of CH,, CH*, C*, and H". Especially for low
electron temperatures the new formulas give a better agree-
ment with the experimental data in qualitative and quantita-
tive respect as previous work by, e.g., Erhardt and Langer.
While the latter used higher order polynomials for the fit
formula, we chose to give the model function a physical
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meaning and employed a generalized form of the Born—
Bethe expressions for inelastic collisions. This approach al-
ready possesses the asymptotically correct form. Our cross
section model function contains only two shape parameters
and one scale parameter. The data to which this function was
fitted came from different sources, covered different energy
ranges, and suffered from discordant calibration. In order to
cope with this problem the most recent data set was taken as
correct on the absolute scale, while the others were equipped
with scale factors. Then Bayesian probability theory was em-
ployed to evaluate the unknown scale factors, the linear co-
efficient, and the model parameters, together with the sought
for cross section itself. Though the full Bayesian approach
has the additional advantage of providing the result with a
confidence range, it may be by far too costly to be incorpo-
rated in daily use. Therefore two approximations were pre-
sented. 'The first one consists of bypassing the otherwise nec-
essary numerical calculation of the cross section by just
using the posterior expectation values of the model param-
eters and inserting them into the model function. No visible
difference with the full approach was found. In the second
short cut the model parameters are obtained by finding the
maximum in an approximative formula for the generic prob-
lem of discordant data sets. Again the result was well within
the confidence region of the full Bayesian calculation. Un-
fortunately, this procedure is not capable of providing an
error bar estimation. Both approximations perform better, the
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higher the quality and number of the data is, a fact which one
should bear in mind when moving to other data sets. Finally,
a procedure to obtain rate coefficients from the cross sections
was presented.
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